Questions are for both separate science and combined science students

Q1.

Figure 1 shows a microscope.

(a) Draw **one** line from each part of the microscope to the function of the part.

Part of the microscope	Function
	To adjust the focus of the microscope
Α	To direct light into the viewer's eye
В	To hold a slide in place
С	To magnify the image of a specimen
	To support the microscope

A student prepared some onion cells.	
The student viewed the onion cells using a microscope.	
This is the method used.	
1. Cut an onion into pieces using a sharp knife.	
2. Peel off a thin layer of cells from one piece.	
3. Place the layer of cells onto a microscope slide.	
4. Add three drops of iodine solution to the layer of cells.	
5. Cover with a cover slip.	
6. Place the slide on the stage of the microscope.	
(b) Why was iodine solution added to the layer of onion cells?	
Tick (✓) one box.	
To dry the cells	
To separate the cells	
To stain the cells	(1)
(c) Why was a thin layer of onion cells used?	(-,
Tick (✓) one box.	
To allow light to pass through the cells	
To allow oxygen to pass through the cells	
To allow water to pass through the cells	
	(1)

(d) The student was worried about using a sharp knife to cut the onion.

The student wrote a risk assessment for using a knife.

Draw **one** line from each part of the risk assessment to the description of the part.

Figure 2 shows what the student saw using the microscope at a magnification of ×400.

)	Line A-B in Figure 2 shows the length of cell Z.			
	Calculate the real length of cell Z .			
	Complete the following steps.			
	Measure the length of line A – B in millimetres (mm).			
	Length of line A – B =	mm		
	Give your measurement of the length of line A–B in micrometres (µm).			
	1 mm = 1 000 μm			
	Length of line A–B =	μm		
	Calculate the real length of cell Z .			
	Use the equation:			
	real length of cell Z (in μ m) = $\frac{\text{length of line A-B (in }\mu\text{m})}{\text{magnification}}$			
	Real length of cell Z =	μm		

(f)	How would onion cells look different microscope?	if they were seen using an electron
	Tick (✓) two boxes.	
	The cells would be coloured.	
	The cells would have no nuclei.	
	The cells would look larger.	

The cells would look more blurred.

The cells would show more internal structures.

(2)

(g) Figure 2 is repeated below.

Figure 2

Figure 3 shows the student's drawing of Figure 2.

Figure 3

ONION CELLS

What **two** improvements could the student make to the drawing in **Figure 3**?

Add colour to the cells.

Complete the cell walls.

Draw each cell on a separate piece of paper.

Include the magnification.

Use a ruler to draw the cells.

Tick (✓) **two** boxes.

(2)

(Total 15 marks)

Q2.

This question is about cells and transport.

(a) Complete **Table 1**.

Table 1

	Contains genetic information
Mitochondria	
	Controls the movement of substances into and out of the cell

(3)

Cells in potatoes are plant cells.

Cells in potatoes do **not** contain chloroplasts.

(b) What is the function of chloroplasts?

(1)

(1)

(c) Name **one** type of cell in a potato plant that does **not** contain chloroplasts.

A student investigated the effect of salt concentration on pieces of potato.

This is the method used.

- 1. Cut three pieces of potato of the same size.
- 2. Record the mass of each potato piece.
- 3. Add 150 cm³ of 0.4 mol/dm³ salt solution to a beaker.
- 4. Place each potato piece into the beaker.
- 5. After 30 minutes, remove each potato piece and dry the surface with a paper towel.
- 6. Record the mass of each potato piece.

7. R	epeat steps 1 to 6 using different concentrations of salt solution.
(d)	What is the independent variable in the investigation?
	Tick (✓) one box.
	Concentration of salt solution
	Mass of potato piece
	Time potato is left in salt solution
	Volume of salt solution
(e)	Why did the student dry the surface of each potato piece with a paper towel in step 5 ?
The (f)	student calculated the percentage change in mass of each potato piece. For one potato piece:
	 the starting mass was 2.5 g the end mass was 2.7 g.
	Calculate the percentage increase in mass of the potato piece.
	Use the equation:
	percentage increase in mass = $\frac{\text{increase in mass}}{\text{starting mass}} \times 100$
	Percentage increase in mass =%

The student used the results from each potato piece to calculate the mean percentage change in mass at each concentration.

Table 2 shows the results.

Table 2

Concentration of salt solution in mol/dm³	Mean percentage (%) change in mass
0.0	9.8
0.1	9.5
0.2	7.0
0.3	0.4
0.4	-1.4

(g) Complete the graph below.

You should:

- label the x-axis
- use a suitable scale for the x-axis
- plot the data from **Table 2**
- draw a line of best fit.

(4)

(h) What concentration of salt solution was equal to the concentration of the solution inside the potato pieces?

Use the graph above.

Concentration =	mol/dm³	
		(1)

(i) Explain why the potato pieces in the 0.4 mol/dm³ salt solution decreased in mass.

(3) (Total 17 marks)